
D02 – Ordinary Differential Equations

D02QFF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D02QFF is a routine for integrating a non-stiff system of first-order ordinary differential equations using
a variable-order variable-step Adams method. A root-finding facility is provided.

2 Specification

SUBROUTINE D02QFF(FCN, NEQF, T, Y, TOUT, G, NEQG, ROOT, RWORK,
1 LRWORK, IWORK, LIWORK, IFAIL)
INTEGER NEQF, NEQG, LRWORK, IWORK(LIWORK), LIWORK, IFAIL
real T, Y(NEQF), TOUT, G, RWORK(LRWORK)
LOGICAL ROOT
EXTERNAL FCN, G

3 Description

Given the initial values x, y1, y2, . . . , yNEQF the routine integrates a non-stiff system of first-order
differential equations of the type, y′

i = fi(x, y1, y2, . . . , yNEQF), for i = 1, 2, . . . ,NEQF, from x = T
to x = TOUT using a variable-order variable-step Adams method. The system is defined by a subroutine
FCN supplied by the user, which evaluates fi in terms of x and y1, y2, . . . , yNEQF, and y1, y2, . . . , yNEQF

are supplied at x = T. The routine is capable of finding roots (values of x) of prescribed event functions
of the form

gj(x, y, y′) = 0, j = 1, 2, . . . ,NEQG.

Each gj is considered to be independent of the others so that roots are sought of each gj individually. The
root reported by the routine will be the first root encountered by any gj . Two techniques for determining
the presence of a root in an integration step are available: the sophisticated method described in Watts
[3] and a simplified method whereby sign changes in each gj are looked for at the ends of each integration
step. The event functions are defined by a real function G supplied by the user which evaluates gj in
terms of x, y1, . . . , yNEQF and y′

1, . . . , y
′
NEQF. In one-step mode the routine returns an approximation

to the solution at each integration point. In interval mode this value is returned at the end of the
integration range. If a root is detected this approximation is given at the root. The user selects the mode
of operation, the error control, the root-finding technique and various optional inputs by a prior call of
the setup routine D02QWF.

For a description of the practical implementation of an Adams formula see Shampine and Gordon [1] and
Shampine and Watts [2].

4 References

[1] Shampine L F and Gordon M K (1975) Computer Solution of Ordinary Differential Equations –
The Initial Value Problem W H Freeman & Co., San Francisco

[2] Shampine L F and Watts H A (1979) DEPAC – design of a user oriented package of ODE solvers
Report SAND79–2374 Sandia National Laboratory

[3] Watts H A (1985) RDEAM – An Adams ODE code with root solving capability Report SAND85–
1595 Sandia National Laboratory

[NP3390/19/pdf] D02QFF.1



D02QFF D02 – Ordinary Differential Equations

5 Parameters

1: FCN — SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (that is the first derivatives y′
i) for given values of its arguments

x, y1, y2, . . . , yNEQF.

Its specification is:

SUBROUTINE FCN(NEQF, X, Y, F)
INTEGER NEQF
real X, Y(NEQF), F(NEQF)

1: NEQF — INTEGER Input
On entry: the number of differential equations.

2: X — real Input
On entry: the current value of the argument x.

3: Y(NEQF) — real array Input
On entry: the current value of the argument yi, for i = 1, 2, . . . ,NEQF.

4: F(NEQF) — real array Output
On exit: the value of fi, for i = 1, 2, . . . ,NEQF.

FCN must be declared as EXTERNAL in the (sub)program from which D02QFF is called.
Parameters denoted as Input must not be changed by this procedure.

2: NEQF — INTEGER Input

On entry: the number of first-order ordinary differential equations to be solved by D02QFF. It must
contain the same value as the parameter NEQF used in a prior call of D02QWF.

Constraint: NEQF ≥ 1.

3: T — real Input/Output

On entry: after a call to D02QWF with STATEF = ’S’ (i.e., an initial entry), T must be set to the
initial value of the independent variable x.

On exit: the value of x at which y has been computed. This may be an intermediate output point,
a root, TOUT or a point at which an error has occurred. If the integration is to be continued,
possibly with a new value for TOUT, T must not be changed.

4: Y(NEQF) — real array Input/Output

On entry: the initial values of the solution y1, y2, . . . , yNEQF.

On exit: the computed values of the solution at the exit value of T. If the integration is to be
continued, possibly with a new value for TOUT, these values must not be changed.

5: TOUT — real Input

On entry: the next value of x at which a computed solution is required. For the initial T, the input
value of TOUT is used to determine the direction of integration. Integration is permitted in either
direction. If TOUT = T on exit, TOUT must be reset beyond T in the direction of integration,
before any continuation call.

6: G — real FUNCTION, supplied by the user. External Procedure

G must evaluate a given component of g(x, y, y′) at a specified point.

If root-finding is not required the actual argument for G must be the dummy routine D02QFZ.
(D02QFZ is included in the NAG Fortran Library and so need not be supplied by the user. Its
name may be implementation dependent: see the Users’ Note for your implementation for details.)

D02QFF.2 [NP3390/19/pdf]



D02 – Ordinary Differential Equations D02QFF

Its specification is:

real FUNCTION G(NEQF, X, Y, YP, K)
INTEGER NEQF, K
real X, Y(NEQF), YP(NEQF)

1: NEQF — INTEGER Input
On entry: the number of differential equations being solved.

2: X — real Input
On entry: the current value of the independent variable.

3: Y(NEQF) — real array Input
On entry: the current values of the dependent variables.

4: YP(NEQF) — real array Input
On entry: the current values of the derivatives of the dependent variables.

5: K — INTEGER Input
On entry: the component of g which must be evaluated.

G must be declared as EXTERNAL in the (sub)program from which D02QFF is called. Parameters
denoted as Input must not be changed by this procedure.

7: NEQG — INTEGER Input

On entry: the number of event functions which the user is defining for root-finding. If root-finding
is not required the value for NEQG must be ≤ 0. Otherwise it must be the same parameter NEQG
used in the prior call to D02QWF.

8: ROOT — LOGICAL Output

On exit: if root-finding was required (NEQG > 0 on entry), then ROOT specifies whether or not
the output value of the parameter T is a root of one of the event functions. If ROOT = .FALSE.,
then no root was detected, whereas ROOT = .TRUE. indicates a root and the user should make a
call to D02QYF for further information.

If root-finding was not required (NEQG = 0 on entry) then on exit ROOT = .FALSE..

9: RWORK(LRWORK) — real array Workspace

This must be the same parameter RWORK as supplied to D02QWF. It is used to pass information
from D02QWF to D02QFF, and from D02QFF to D02QXF, D02QYF and D02QZF. Therefore the
contents of this array must not be changed before the call to D02QFF or calling any of the routines
D02QXF, D02QYF and D02QZF.

10: LRWORK — INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which D02QFF
is called.

This must be the same parameter LRWORK as supplied to D02QWF.

11: IWORK(LIWORK) — INTEGER array Workspace

This must be the same parameter IWORK as supplied to D02QWF. It is used to pass information
from D02QWF to D02QFF, and from D02QFF to D02QXF, D02QYF and D02QZF. Therefore the
contents of this array must not be changed before the call to D02QFF or calling any of the routines
D02QXF, D02QYF and D02QZF.

[NP3390/19/pdf] D02QFF.3



D02QFF D02 – Ordinary Differential Equations

12: LIWORK — INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which D02QFF
is called.

This must be the same parameter LIWORK as supplied to D02QWF.

13: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL = 0 unless the routine detects an error or gives a warning (see Section 6).

For this routine, because the values of output parameters may be useful even if IFAIL �= 0 on exit,
users are recommended to set IFAIL to −1 before entry. It is then essential to test the value of
IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings specified by the routine:

IFAIL = 1

On entry, the integrator detected an illegal input, or D02QWF has not been called prior to the
call to the integrator. If on entry IFAIL = 0 or −1, the form of the error will be detailed
on the current error message unit (as defined by X04AAF).

This error may be caused by overwriting elements of RWORK and IWORK.

IFAIL = 2

The maximum number of steps has been attempted (at a cost of about 2 calls to FCN per step).
(See parameter MAXSTP in D02QWF.) If integration is to be continued then the user need only
reset IFAIL and call the routine again and a further MAXSTP steps will be attempted.

IFAIL = 3

The step size needed to satisfy the error requirements is too small for the machine precision
being used. (See parameter TOLFAC in D02QXF.)

IFAIL = 4

Some error weight wi became zero during the integration (see parameters VECTOL, RTOL and
ATOL in D02QWF.) Pure relative error control (ATOL = 0.0) was requested on a variable (the
ith) which has now become zero. (See parameter BADCMP in D02QXF.) The integration was
successful as far as T.

IFAIL = 5

The problem appears to be stiff (see the Chapter Introduction for a discussion of the term ‘stiff’).
Although it is inefficient to use this integrator to solve stiff problems, integration may be continued
by resetting IFAIL and calling the routine again.

IFAIL = 6

A change in sign of an event function has been detected but the root-finding process appears to
have converged to a singular point T rather than a root. Integration may be continued by resetting
IFAIL and calling the routine again.

IFAIL = 7

The code has detected two successive error exits at the current value of T and cannot proceed.
Check all input variables.

D02QFF.4 [NP3390/19/pdf]



D02 – Ordinary Differential Equations D02QFF

7 Accuracy

The accuracy of integration is determined by the parameters VECTOL, RTOL and ATOL in a prior call
to D02QWF. Note that only the local error at each step is controlled by these parameters. The error
estimates obtained are not strict bounds but are usually reliable over one step. Over a number of steps
the overall error may accumulate in various ways, depending on the properties of the differential equation
system. The code is designed so that a reduction in the tolerances should lead to an approximately
proportional reduction in the error. The user is strongly recommended to call D02QFF with more than
one set of tolerances and to compare the results obtained to estimate their accuracy.

The accuracy obtained depends on the type of error test used. If the solution oscillates around zero a
relative error test should be avoided, whereas if the solution is exponentially increasing an absolute error
test should not be used. If different accuracies are required for different components of the solution then
a component-wise error test should be used. For a description of the error test see the specifications of
the parameters VECTOL, ATOL and RTOL in the routine document for D02QWF.

The accuracy of any roots located will depend on the accuracy of integration and may also be restricted
by the numerical properties of g(x, y, y′). When evaluating g the user should try to write the code so
that unnecessary cancellation errors will be avoided.

8 Further Comments

If the routine fails with IFAIL = 3 then the combination of ATOL and RTOL may be so small that a
solution cannot be obtained, in which case the routine should be called again with larger values for RTOL
and/or ATOL. If the accuracy requested is really needed then the user should consider whether there is
a more fundamental difficulty. For example:

(a) in the region of a singularity the solution components will usually be of a large magnitude. The
routine could be used in one-step mode to monitor the size of the solution with the aim of trapping
the solution before the singularity. In any case numerical integration cannot be continued through
a singularity, and analytical treatment may be necessary;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components, the routine will
require a very small step size to preserve stability. This will usually be exhibited by excessive
computing time and sometimes an error exit with IFAIL = 3, but usually an error exit with
IFAIL = 2 or 5. The Adams methods are not efficient in such cases and the user should consider
using a routine from the subchapter D02M–D02N. A high proportion of failed steps (see parameter
NFAIL in D02QXF) may indicate stiffness but there may be other reasons for this phenomenon.

D02QFF can be used for producing results at short intervals (for example, for graph plotting); the user
should set CRIT = .TRUE. and TCRIT to the last output point required in a prior call to D02QWF and
then set TOUT appropriately for each output point in turn in the call to D02QFF.

9 Example

We solve the equation
y′′ = −y, y(0) = 0, y′(0) = 1

reposed as
y′
1 = y2

y′
2 = −y1

over the range [0, 10.0] with initial conditions y1 = 0.0 and y2 = 1.0 using vector error control
(VECTOL = .TRUE.) and computation of the solution at TOUT = 10.0 with TCRIT = 10.0
(CRIT = .TRUE.). Also, we use D02QFF to locate the positions where y1 = 0.0 or where the first
component has a turning point, that is y′

1 = 0.0.

[NP3390/19/pdf] D02QFF.5



D02QFF D02 – Ordinary Differential Equations

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D02QFF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQF, NEQG, LATOL, LRTOL, LRWORK, LIWORK
PARAMETER (NEQF=2,NEQG=2,LATOL=NEQF,LRTOL=NEQF,

+ LRWORK=23+23*NEQF+14*NEQG,LIWORK=21+4*NEQG)
real TSTART, HMAX
PARAMETER (TSTART=0.0e0,HMAX=0.0e0)

* .. Local Scalars ..
real HLAST, HNEXT, T, TCRIT, TCURR, TOLFAC, TOUT
INTEGER BADCMP, I, IFAIL, INDEX, MAXSTP, NFAIL, NSUCC,

+ ODLAST, ODNEXT, TYPE
LOGICAL ALTERG, CRIT, ONESTP, ROOT, SOPHST, VECTOL
CHARACTER*1 STATEF

* .. Local Arrays ..
real ATOL(LATOL), RESIDS(NEQG), RTOL(LRTOL),

+ RWORK(LRWORK), Y(NEQF), YP(NEQF)
INTEGER EVENTS(NEQG), IWORK(LIWORK)

* .. External Functions ..
real GTRY02
EXTERNAL GTRY02

* .. External Subroutines ..
EXTERNAL D02QFF, D02QWF, D02QXF, D02QYF, FTRY02

* .. Executable Statements ..
WRITE (NOUT,*) ’D02QFF Example Program Results’
TCRIT = 10.0e0
STATEF = ’S’
VECTOL = .TRUE.
ONESTP = .FALSE.
CRIT = .TRUE.
MAXSTP = 0
SOPHST = .TRUE.
DO 20 I = 1, NEQF

RTOL(I) = 1.0e-4
ATOL(I) = 1.0e-6

20 CONTINUE
IFAIL = 0

*
CALL D02QWF(STATEF,NEQF,VECTOL,ATOL,LATOL,RTOL,LRTOL,ONESTP,CRIT,

+ TCRIT,HMAX,MAXSTP,NEQG,ALTERG,SOPHST,RWORK,LRWORK,
+ IWORK,LIWORK,IFAIL)

*
T = TSTART
TOUT = TCRIT
Y(1) = 0.0e0
Y(2) = 1.0e0

*
40 IFAIL = -1

*
CALL D02QFF(FTRY02,NEQF,T,Y,TOUT,GTRY02,NEQG,ROOT,RWORK,LRWORK,

+ IWORK,LIWORK,IFAIL)
*

D02QFF.6 [NP3390/19/pdf]



D02 – Ordinary Differential Equations D02QFF

IF (IFAIL.EQ.0) THEN
*

CALL D02QXF(NEQF,YP,TCURR,HLAST,HNEXT,ODLAST,ODNEXT,NSUCC,
+ NFAIL,TOLFAC,BADCMP,RWORK,LRWORK,IWORK,LIWORK,
+ IFAIL)

*
IF (ROOT) THEN

*
CALL D02QYF(NEQG,INDEX,TYPE,EVENTS,RESIDS,RWORK,LRWORK,

+ IWORK,LIWORK,IFAIL)
*

WRITE (NOUT,*)
WRITE (NOUT,99999) ’Root at ’, T
WRITE (NOUT,99998) ’for event equation ’, INDEX,

+ ’ with type’, TYPE, ’ and residual ’, RESIDS(INDEX)
WRITE (NOUT,99999) ’ Y(1) = ’, Y(1), ’ Y’’(1) = ’, YP(1)
DO 60 I = 1, NEQG

IF (I.NE.INDEX) THEN
IF (EVENTS(I).NE.0) THEN

WRITE (NOUT,99998) ’and also for event equation ’,
+ I, ’ with type’, EVENTS(I), ’ and residual ’,
+ RESIDS(I)

END IF
END IF

60 CONTINUE
IF (TCURR.LT.TOUT) GO TO 40

END IF
END IF
STOP

*
99999 FORMAT (1X,A,1P,e13.5,A,1P,e13.5)
99998 FORMAT (1X,A,I2,A,I3,A,1P,e13.5)

END
*

SUBROUTINE FTRY02(NEQF,T,Y,YP)
* .. Scalar Arguments ..

real T
INTEGER NEQF

* .. Array Arguments ..
real Y(NEQF), YP(NEQF)

* .. Executable Statements ..
YP(1) = Y(2)
YP(2) = -Y(1)
RETURN
END

*
real FUNCTION GTRY02(NEQF,T,Y,YP,K)

* .. Scalar Arguments ..
real T
INTEGER K, NEQF

* .. Array Arguments ..
real Y(NEQF), YP(NEQF)

* .. Executable Statements ..
IF (K.EQ.1) THEN

GTRY02 = YP(1)
ELSE

GTRY02 = Y(1)
END IF

[NP3390/19/pdf] D02QFF.7



D02QFF D02 – Ordinary Differential Equations

RETURN
END

9.2 Program Data

None.

9.3 Program Results

D02QFF Example Program Results

Root at 0.00000E+00
for event equation 2 with type 1 and residual 0.00000E+00
Y(1) = 0.00000E+00 Y’(1) = 1.00000E+00

Root at 1.57076E+00
for event equation 1 with type 1 and residual -5.20417E-17
Y(1) = 1.00003E+00 Y’(1) = -5.20417E-17

Root at 3.14151E+00
for event equation 2 with type 1 and residual -1.27676E-15
Y(1) = -1.27676E-15 Y’(1) = -1.00012E+00

Root at 4.71228E+00
for event equation 1 with type 1 and residual 1.67921E-15
Y(1) = -1.00010E+00 Y’(1) = 1.67921E-15

Root at 6.28306E+00
for event equation 2 with type 1 and residual 2.65066E-15
Y(1) = 2.65066E-15 Y’(1) = 9.99979E-01

Root at 7.85379E+00
for event equation 1 with type 1 and residual -7.63278E-17
Y(1) = 9.99970E-01 Y’(1) = -7.63278E-17

Root at 9.42469E+00
for event equation 2 with type 1 and residual -6.86950E-16
Y(1) = -6.86950E-16 Y’(1) = -9.99854E-01

D02QFF.8 (last) [NP3390/19/pdf]


